ResNet 논문 리뷰

2025. 3. 29. 09:00·Computer Vision/Backbone

Deep Residual Learning for Image Recognition

 

Residual Learning의 기본개념

논문에서 나온 Figure 2.은 ResNet의 핵심 개념인 shortcut connection을 설명하고 있다. 논문에선 Shortcut이라고 적혀있지만  skip을 사용하여 skip connection을 사용하기도 한다. 필자는 skip connection이 더 익숙하므로 skip connection으로 작성해 나가겠다.

  • Residual block 연산: $y = F(x) + x$
    • $x$: 입력 벡터
    • $y$: 출력 벡터
    • $F(x)$: 학습해야 하는 연산들 (Convolution, Batch Normalization, ReLU)
    • $x$를 그대로 더하는 것(Identity)이 skip connection이다. 이러한 skip connection을 통해 gradient vanishing 문제를 완화할 수 있다.

*만약 입력과 채널이 다른 경우의 연산은 $y = F(x) + W_s x$이다. W_s는 1x1 convolution으로 채널 수를 맞춰주기 위한 연산이다.

 

Basic Block

ResNet-18, ResNet-34 같은 비교적 얕은(shallower) 모델에서 사용되며 두 개의 3x3 convolution을 사용하여 $F(x)$를 구성한다.

  • 수식: $F(x) = W_2\sigma(W_1 x)$
    • $W_1, W_2$: 3x3 convolution
    • $\sigma$: ReLU 활성화 함수
    • 즉 Basic Blcok은 3x3 convoltuion -> ReLU -> 3x3 convolution으로 형태로 진행된다.
  • 특징: 연산량이 많지만 단순한 구조로 작은 네트워크에서는 충분히 효율적

 

Bottleneck Block

ResNet-50, ResNet-101, ResNet-152 같은 비교적 깊은(shallower) 모델에서 사용되며 차원 축소, 메인 연산, 차원 확장 구조로 연산량을 줄였다.

  • 수식: $F(x) = W_3\sigma(W_2\sigma(W_1 x))$
    • $W_1$: 1x1 convolution (차원 축소)
    • $W_2$: 3x3 convolution (메인 연산)
    • $W_3$: 1x1 convolution (차원 확장)
    • $\sigma$: ReLU 활성화 함수
  • 특징: 1x1 convolution으로 feature map의 channel 수를 조정하여 최적의 계산 효율 제공

 

그림1. ResNet50 Architecture
그림 2. ImageNet을 위한 ResNet 표

Model의 구조를 간단히 보려면 그림2.를 skip connection을 함께 보려면 그림1.을 참고하면 된다. 그림1.의 점선으로 표시된 skip connection이 앞에서 설명한 입력과 출력 차원이 다를 경우의 연산이다.

 

ResNet Code

from typing import Any, Callable, List, Optional, Type, Union

import torch
import torch.nn as nn
from torch import Tensor

from .utils import load_state_dict_from_url

__all__ = [
    "ResNet",
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
    "wide_resnet50_2",
    "wide_resnet101_2",
]


model_urls = {
    "resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth",
    "resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth",
    "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
    "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
    "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
    "resnext50_32x4d": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
    "resnext101_32x8d": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
    "wide_resnet50_2": "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
    "wide_resnet101_2": "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
}


def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )


def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                "or a 3-element tuple, got {}".format(replace_stride_with_dilation)
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(
                self.inplanes,
                planes,
                stride,
                downsample,
                self.groups,
                self.base_width,
                previous_dilation,
                norm_layer,
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _resnet(
    arch: str,
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
    pretrained: bool,
    progress: bool,
    **kwargs: Any
) -> ResNet:
    model = ResNet(block, layers, **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet("resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)


def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet("resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)


def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)


def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-101 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet("resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)


def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-152 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet("resnet152", Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)


def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 4
    return _resnet("resnext50_32x4d", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)


def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 8
    return _resnet("resnext101_32x8d", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)


def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs["width_per_group"] = 64 * 2
    return _resnet("wide_resnet50_2", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)


def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs["width_per_group"] = 64 * 2
    return _resnet("wide_resnet101_2", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)

model = resnet50(pretrained=True)이런식으로 불러와서 사용하자.

'Computer Vision > Backbone' 카테고리의 다른 글

VGGNet 논문 리뷰  (0) 2025.03.29
'Computer Vision/Backbone' 카테고리의 다른 글
  • VGGNet 논문 리뷰
BeBeom
BeBeom
Computer vision engineer
  • BeBeom
    BeBeom의 개발일기
    BeBeom
  • 전체
    오늘
    어제
    • 분류 전체보기 (4)
      • Computer Vision (4)
        • Backbone (2)
        • Contrastive Learning (2)
      • Deep Learning (0)
  • 블로그 메뉴

    • 홈
    • 태그
    • 방명록
  • 링크

  • 공지사항

  • 인기 글

  • 태그

    VGG19
    CV
    vggnet
    Contrastive Learning
    VGG16
    Computer Vision
    Backbone
    ResNet
    SimCLR
    resnet50
    SSL
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.3
BeBeom
ResNet 논문 리뷰
상단으로

티스토리툴바